Benchmarking Electrocatalytic Efficiency of Iron-Nickel Nanocarbides as Electrocatalysts for the Oxygen Evolution Reaction Julian Bazo, Amanda Ritz, Isabella Bertini, Samuel Wenzel, Edward Nyugen, Geoffrey Strouse, Robert Lazenby

Electrocatalysts for Water Splitting

Electrocatalytic Activity and Stability

Ni(OH)₂ / NiOOH Redox Activity Analysis

Conclusions and Future Work

Conclusions:

activity and lowest, most favorable tafel slope. cause limited current to achieve at a faster rate. an anodic peak shift towards a lower potential. Future Work:

FeNiC samples with varying Fe content. samples.

- ▼ Results indicate 25% Fe content exhibited the greatest electrocatalytic
- Electrocatalytic mass loading data indicates that smaller mass loading will
- ▼ Voltammetric analysis indicates that a higher percentage of iron will result in
- ▼ Raman analysis of varying Fe % samples to identify active oxide species of
- ▼ Increasing catalyst loading to better explore redox behavior in FeNiC

References and Group Information

Office of Fossil Energy. HYDROGEN STRATEGY Enabling a Low-Carbon Economy. United States Department

Follow us: @lazenbylab